
jOOQ
Workshop

Simon Martinelli
@simas_ch
martinelli.ch

About me

1972 1995 2000 2007 2009 2011 2012 2013 2021 2022 2023

COBOL JSR-352
Java Batch

JSR-354
Money/Currency

About you

• What’s your name?
• What’s your day job?
• Did you ever use jOOQ?
• Are you using JPA/Hibernate, QueryDSL or MyBatis?
• What are your expectations?

Introduction

Why jOOQ?

SQL was never meant to be abstracted. To be confined in
the narrow boundaries of heavy mappers, hiding the
beauty and simplicity of relational data.
SQL was never meant to be object-oriented.
SQL was never meant to be anything other than... SQL!

- Lukas Eder

Use Cases

• Type-safe database object referencing through generated
artifacts

• Type-safe SQL construction / SQL building through a
complete querying DSL API modeling SQL as a domain-
specific language in Java

• Convenient query execution through an improved API for
result fetching

• SQL dialect abstraction and SQL clause emulation to improve
cross-database compatibility and to enable missing
features in simpler databases

Scenarios

• Using Hibernate for 70% of the queries (i.e. CRUD) and
jOOQ for the remaining 30% where SQL is really needed

• Using jOOQ for SQL building and JDBC for SQL execution
• Using jOOQ for SQL building and Spring Data for SQL

execution
• Using jOOQ without the source code generator to build

the basis of a framework for dynamic SQL execution

Set-Based Thinking

• Most conceptual differences between JPA and jOOQ are not
technology-specific, but a matter of how you think about your
database interactions

• There are two approaches
1. Working with entity state transitions
2. Working with data set transformations

• Neither approach is "the best" one; both approaches are better
suited to certain use cases

• https://www.jooq.org/doc/latest/manual/coming-from-jpa/

https://www.jooq.org/doc/latest/manual/coming-from-jpa/

DB jOOQ
Generator

Java
Classes

jOOQ DSL

Architecture

Where to Start?

• https://jooq.org

• https://github.com/jOOQ/demo

https://jooq.org/
https://github.com/jOOQ/demo

Setup

https://www.jooq.org/sakila

Tools

• Maven
• Spring Boot
• Testcontainers
• PostgreSQL

Testcontainers

• https://testcontainers.com/

• Lifecycle management
https://testcontainers.com/guides/testcontainers-
container-lifecycle/

https://testcontainers.com/
https://testcontainers.com/guides/testcontainers-container-lifecycle/
https://testcontainers.com/guides/testcontainers-container-lifecycle/

Code Generation
https://www.jooq.org/doc/latest/manual/code-generation/

Why?

• Increased IDE support
Type your Java code directly against your database
schema, with all type information available

• Type-safety
When your database schema changes, your generated
code will also change, removing columns will lead to
compilation errors, which you can detect early

From Where?

• jOOQ assumes your database already exists

• There are two option
1. Real Database

• Use all DB features
• Use reference database or Testcontainers

2. DDL scripts
• Limited to “standard” SQL
• Convenient because no running DB is needed

How?

• https://www.jooq.org/doc/latest/manual/code-
generation/codegen-configuration/

https://www.jooq.org/doc/latest/manual/code-generation/codegen-configuration/
https://www.jooq.org/doc/latest/manual/code-generation/codegen-configuration/

Ex00: Get Familiar With the Project

• Inspect the project
https://github.com/simasch/jooq-workshop

1. pom.xml
2. DDL Scripts

• Run
mvnw test

https://github.com/simasch/jooq-workshop

SQL Building
https://www.jooq.org/doc/latest/manual/sql-building/

The Query DSL Type

• Problem
• SQL is a declarative language that is hard to integrate into

procedural, object-oriented, functional, or any other programming
language

• Solution
• jOOQ integrates SQL as an "internal domain-specific language"

directly into Java
• SQL building is the main feature of jOOQ
• All other features (such as SQL execution and code generation) are

mere conveniences built on top of jOOQ’s SQL-building capabilities

The Static Query DSL API

• jOOQ exposes many interfaces and hides most
implementation facts from client code. The reasons for this
are:

• Interface-driven design. This allows for modelling queries in a fluent
API most efficiently

• Reduction of complexity for client code.
• API guarantee. You only depend on the exposed interfaces, not

concrete (potentially dialect-specific) implementations.
• The org.jooq.impl.DSL class is the main class from where

you will create all jOOQ objects. It is a static factory for table
expressions, column expressions (or “fields”), conditional
expressions, and many other QueryParts.

The DSLContext API

• https://www.jooq.org/doc/latest/manual/sql-
building/dsl-context/

https://www.jooq.org/doc/latest/manual/sql-building/dsl-context/
https://www.jooq.org/doc/latest/manual/sql-building/dsl-context/

Settings

• https://www.jooq.org/doc/current/manual/sql-
building/dsl-context/custom-settings/

@Configuration
public class JtafJooqConfiguration {

@Bean
Settings jooqSettings() {

return new Settings()
.withRenderNameCase(RenderNameCase.LOWER)
.withRenderQuotedNames(RenderQuotedNames.NEVER);

}
}

https://www.jooq.org/doc/current/manual/sql-building/dsl-context/custom-settings/
https://www.jooq.org/doc/current/manual/sql-building/dsl-context/custom-settings/

DSLContext Example

DSLContext dsl = DSL.using(connection, dialect);

Result<?> result = dsl
.select()
.from(BOOK)
.where(BOOK.TITLE.like("Animal%"))
.fetch();

JOIN

• “Regular” JOINS

join(FILM_ACTOR)
.on(FILM_ACTOR.ACTOR_ID.eq(ACTOR.ACTOR_ID))

• Implicit JOINS

select(FILM_ACTOR.actor().LAST_NAME)

Superpower MULTISET

• https://www.jooq.org/doc/current/manual/sql-
building/column-expressions/multiset-value-
constructor/

https://www.jooq.org/doc/current/manual/sql-building/column-expressions/multiset-value-constructor/
https://www.jooq.org/doc/current/manual/sql-building/column-expressions/multiset-value-constructor/
https://www.jooq.org/doc/current/manual/sql-building/column-expressions/multiset-value-constructor/

Ex01: Write Your First jOOQ Queries

• Create your very first jOOQ query that selects all Actors
• Inspect the generated SQL statement

• Get all names of the Films, incl. the Language
• Try the various JOINs incl. IMPLICIT JOIN

• List all Actors first and last name with their number of Films

• Evaluate MULTISET
• Load the name of the Category and the name of the Film as nested

element

SQL Execution
https://www.jooq.org/doc/latest/manual/sql-execution/

SQL Execution with JDBC

• JDBC calls executable objects "java.sql.Statement".
It distinguishes between three types of statements:

• java.sql.Statement, or "static statement"
• java.sql.PreparedStatement
• java.sql.CallableStatement

• These things are abstracted away by jOOQ, which
exposes such concepts in a more object-oriented way

Comparing jOOQ and JDBC

• https://www.jooq.org/doc/latest/manual/sql-
execution/comparison-with-jdbc/

https://www.jooq.org/doc/latest/manual/sql-execution/comparison-with-jdbc/
https://www.jooq.org/doc/latest/manual/sql-execution/comparison-with-jdbc/

Fetching

• The standard fetch

Result<R> fetch();

• When you know your query returns at most one record. This may return null.

R fetchOne();

• When you know your query returns exactly one record. This never returns null.

R fetchSingle();

• When you know your query returns at most one record.

Optional<R> fetchOptional();

Ex02: Use Different Return Types

• Select the first and last name of a the first Actor

• Select a list of Films ordered by release year, ascending

• Create a query that returns a Customer as Optional

jOOQ Records
https://www.jooq.org/doc/latest/manual/sql-
execution/fetching/record-vs-tablerecord/

Fetching Records

BookRecord book = dsl
.selectFrom(BOOK)
.where(BOOK.ID.eq(1))
.fetchOne();

// Typesafe field access
System.out.println("Title: " + book.getTitle());

Record1 to Record22

• Type-safety is also applied to records for degrees
up to 22

• To express this fact, org.jooq.Record is extended by
org.jooq.Record1 to org.jooq.Record22

Example Record2

public interface Record2<T1, T2> extends Record {
// Access fields and values as row value expressions
Row2<T1, T2> fieldsRow();
Row2<T1, T2> valuesRow();
// Access fields by index
Field<T1> field1();
Field<T2> field2();
// Access values by index
T1 value1();
T2 value2();

}

Arrays, Maps and Lists

• https://www.jooq.org/doc/latest/manual/sql-
execution/fetching/arrays-maps-and-lists/

https://www.jooq.org/doc/latest/manual/sql-execution/fetching/arrays-maps-and-lists/
https://www.jooq.org/doc/latest/manual/sql-execution/fetching/arrays-maps-and-lists/

Handling Records

• Record Handler
https://www.jooq.org/doc/latest/manual/sql-
execution/fetching/recordhandler/

• RecordMapper
https://www.jooq.org/doc/latest/manual/sql-
execution/fetching/recordmapper/

https://www.jooq.org/doc/latest/manual/sql-execution/fetching/recordhandler/
https://www.jooq.org/doc/latest/manual/sql-execution/fetching/recordhandler/
https://www.jooq.org/doc/latest/manual/sql-execution/fetching/recordmapper/
https://www.jooq.org/doc/latest/manual/sql-execution/fetching/recordmapper/

Ex03: Records are your Friends

• Return the Film title and length ordered by length
descending

• Use a RecordHandler to log the result
• Select the Film but return only a List of IDs

CRUD with
UpdatableRecords
https://www.jooq.org/doc/latest/manual/sql-execution/crud-with-
updatablerecords/

CRUD

• Your database application probably consists of 50% - 80%
CRUD, but only 20% - 50% of querying

• Create (INSERT)
• Read (SELECT)
• Update (UPDATE)
• Delete (DELETE)

• CRUD always uses the same patterns and leads to a lot of
boilerplate code

• Like Hibernate/JPA and other ORMs, jOOQ facilitates CRUD
using a specific API involving org.jooq.UpdatableRecord
types

Primary Keys and Updatability

-- Inserting uses a previously generated key value or
generates it afresh
INSERT INTO BOOK (ID, TITLE) VALUES (5, 'Animal Farm');

-- Other operations can use the generated key value
SELECT * FROM BOOK WHERE ID = 5;
UPDATE BOOK SET TITLE = '1984' WHERE ID = 5;
DELETE FROM BOOK WHERE ID = 5;

Simple CRUD with UpdatableRecord

// Store (insert or update) a record to the database.
int store() throws DataAccessException;

// Delete a record from the database
int delete() throws DataAccessException;

// Refresh a record from the database.
void refresh() throws DataAccessException;

Ex04: Fun with Updatable Records

• A Customer wants to rent a film

1. Find the Staff by e-mail
2. Find the Customer by first and last name
3. Find an Inventory by the Film name
4. Create and save the Rental

Working with POJOs
https://www.jooq.org/doc/latest/manual/sql-
execution/fetching/pojos/

Usage

// A "mutable" POJO class
public class MyBook1 {

public int id;
public String title;

}

// Fetching records into your custom POJOs:
MyBook1 myBook = dsl.select().from(BOOK).fetchAny().into(MyBook1.class);
List<MyBook1> myBooks = dsl.select().from(BOOK).fetch().into(MyBook1.class);
List<MyBook1> myBooks = dsl.select().from(BOOK).fetchInto(MyBook1.class);

Storing POJOs

// A "mutable" POJO class
public class MyBook {
public int id;
public String title;

}

// Create a new POJO instance
MyBook myBook = new MyBook();
myBook.id = 10;
myBook.title = "Animal Farm";

// Populate a jOOQ-generated
// BookRecord from your POJO
BookRecord book = dsl.newRecord(BOOK,
myBook);

// Insert it (implicitly)
book.store();

Ex05: The Joy of POJOs

• Like in Ex03, return the Film title and length ordered by
length descending like

• But this time, create a Java Record FilmAndLength and use it
as the result

• Use a nested Java Record to hold the result of the
MULTISET exercise from Ex03

DAOs
https://www.jooq.org/doc/current/manual/sql-execution/daos/

Data Access Object (DAO)

• Access to data varies depending on the source of the
data.

• Access to persistent storage, such as to a database,
varies greatly depending on the type of storage
(relational databases, object-oriented databases, flat
files, and so forth) and the vendor implementation

https://www.oracle.com/java/technologies/dataaccessobject.html

https://www.oracle.com/java/technologies/dataaccessobject.html

DAO per UpdatableRecord

• If you're using jOOQ's code generator, you can configure
it to generate POJOs and DAOs for you

• jOOQ then generates one DAO per UpdatableRecord, i.e.
per table with a single-column primary key

• Generated DAOs implement a common jOOQ type
called org.jooq.DAO

Example

public class BookDao extends DAOImpl<BookRecord, Book, Integer> {

// Columns with primary/unique keys produce fetchOne() methods
public Book fetchOneById(Integer value) { ... }

// Other columns produce fetch() methods, returning a list
public List<Book> fetchByAuthorId(Integer... values) { ... }
public List<Book> fetchByTitle(String... values) { ... }

}

Ex06: DAOs are Convenient

• Inspect the generated DAOs. Which methods are
generated and which are inherited?

• Use the RentalDao to
• Read by rental date
• Update the rental date
• Delete by id

Transactions and Locking
https://www.jooq.org/doc/current/manual/sql-execution/transaction-
management/
https://www.jooq.org/doc/current/manual/sql-execution/crud-with-
updatablerecords/optimistic-locking/

jOOQ and Transactions

• Use third-party libraries like Spring Transactions
• Use a JTA-compliant Java EE transaction manager from

your container
• Call JDBC's Connection.commit(), Connection.rollback()

and other methods on your JDBC driver
• You can issue vendor-specific COMMIT, ROLLBACK and

other statements directly in your database
• You use jOOQ's transaction API

jOOQ Transactions

dsl.transaction((Configuration trx) -> {
// Important: Use the DSLContext of the transation
AuthorRecord author = trx.dsl()

.insertInto(AUTHOR, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)

.values("George", "Orwell")

.returning()

.fetchOne();

// Implicit commit executed here
});

Optimistic Locking

• jOOQ allows you to perform CRUD operations using
optimistic locking

• You can immediately take advantage of this feature by
activating the relevant executeWithOptimisticLocking
Setting

Optimistic Locking: Processing

1. Before UPDATE or DELETE statements, jOOQ will run a
SELECT .. FOR UPDATE statement, pessimistically locking
the record for the subsequent UPDATE/DELETE

2. The data fetched with the previous SELECT will be
compared against the data in the record being stored
or deleted
• An org.jooq.exception.DataChangedException is thrown if the

record has been modified in the meantime
• The record is successfully stored/deleted, if the record had not

been modified in the meantime

Optimistic Locking: Comparison

• By default, jOOQ compares all fields
• But you can also use a TIMESTAMP or VERSION field

• Reference: https://www.jooq.org/doc/current/manual/code-
generation/codegen-advanced/codegen-config-
database/codegen-database-record-version-timestamp-fields/

https://www.jooq.org/doc/current/manual/code-generation/codegen-advanced/codegen-config-database/codegen-database-record-version-timestamp-fields/
https://www.jooq.org/doc/current/manual/code-generation/codegen-advanced/codegen-config-database/codegen-database-record-version-timestamp-fields/
https://www.jooq.org/doc/current/manual/code-generation/codegen-advanced/codegen-config-database/codegen-database-record-version-timestamp-fields/

DataAccessException

• DataAccessException
General exception usually originating from a java.sql.SQLException

• DataChangedException
An exception indicating that the database's underlying record has been
changed in the meantime

• DataTypeException
Something went wrong during the type conversion

• DetachedException
A SQL statement was executed on a "detached" UpdatableRecord or a
"detached" SQL statement.

• InvalidResultException
An operation was performed expecting only one result, but several results were
returned.

• MappingException
Something went wrong when loading a record from a POJO or when mapping a
record into a POJO

Ex07: Locking and transactions understood

• Write a test that updates a record in parallel and try to
produce a DataChangedException

• Hint: You will need to start two threads and add a wait time in
one of the threads

• Read about nested transactions
• https://blog.jooq.org/nested-transactions-in-jooq/

https://blog.jooq.org/nested-transactions-in-jooq/

Integrating with JPA
https://www.jooq.org/doc/current/manual/getting-started/jooq-
and-jpa/

Using jOOQ with JPA Native Query

// Extract the SQL statement from the jOOQ query:
Query result = em.createNativeQuery(query.getSQL());

// Extract the bind values from the jOOQ query:
List<Object> values = query.getBindValues();
for (int i = 0; i < values.size(); i++) {

result.setParameter(i + 1, values.get(i));
}

return result.getResultList();

Ex08: Hello JPA

• Create JPA entities for Category and Film and map the
OneToMany relationship from Category to Film

• Construct a query with jOOQ and use it in a JPA native
Query

• Check if the result are Entities

Exporting Data
https://www.jooq.org/doc/current/manual/sql-
execution/exporting/

Exporting

• jOOQ can export Result<Record> to
• XML
• CSV
• JSON
• HTML
• Text
• Charts

Ex08: Export it!

• Try the various export formats

Thank you!

Web https://martinelli.ch
E-Mail simon@martinelli.ch
Twitter simas_ch
LinkedIn
https://linkedin.com/in/simonmartinelli

	jOOQ�Workshop
	About me
	About you
	Foliennummer 4
	Foliennummer 5
	Introduction
	Why jOOQ?
	Use Cases
	Scenarios
	Set-Based Thinking
	Architecture
	Where to Start?
	Setup
	Foliennummer 14
	Tools
	Testcontainers
	Code Generation
	Why?
	From Where?
	How?
	Ex00: Get Familiar With the Project
	SQL Building
	The Query DSL Type
	The Static Query DSL API
	The DSLContext API
	Settings
	DSLContext Example
	JOIN
	Superpower MULTISET
	Ex01: Write Your First jOOQ Queries
	SQL Execution
	SQL Execution with JDBC
	Comparing jOOQ and JDBC
	Fetching
	Ex02: Use Different Return Types
	jOOQ Records
	Fetching Records
	Record1 to Record22
	Example Record2
	Arrays, Maps and Lists
	Handling Records
	Ex03: Records are your Friends
	CRUD with UpdatableRecords
	CRUD
	Primary Keys and Updatability
	Simple CRUD with UpdatableRecord
	Ex04: Fun with Updatable Records
	Working with POJOs
	Usage
	Storing POJOs
	Ex05: The Joy of POJOs
	DAOs
	Data Access Object (DAO)
	Foliennummer 54
	DAO per UpdatableRecord
	Example
	Ex06: DAOs are Convenient
	Transactions and Locking
	jOOQ and Transactions
	jOOQ Transactions
	Optimistic Locking
	Optimistic Locking: Processing
	Optimistic Locking: Comparison
	DataAccessException
	Ex07: Locking and transactions understood
	Integrating with JPA
	Using jOOQ with JPA Native Query
	Ex08: Hello JPA
	Exporting Data
	Exporting
	Ex08: Export it!
	Thank you!

