
JavaLand 2025
Simon Martinelli

Vaadin Workshop

• 30 years of Software Engineering
• Java for 25 years
• Self-employed since 2009
• University teacher for 18 years
• JUG Switzerland, Location Bern

About Me

• Are you a front-end, back-end, or full-stack developer?

• Did you ever use Vaadin?

• What are your expectations?

About You

Workshop Topics

1. https://vaadin.com/

2. https://vaadin.com/forum

3. https://stackoverflow.com/

4. Ask AI J

Helpful Resources

https://vaadin.com/
https://vaadin.com/forum
https://stackoverflow.com/

History

HTML AJAX GWT
Web

Components

.1 3 4 5 6 7 8 10

TypeScript
&

Lit Element

.2 15

Vaadin
Components

&
Flow

20
01

20
02

20
02

20
05

20
07

20
09

20
13

20
17

20
19

…

20
20

23

Fusion
renamed

to Hilla

20
22

24

Dev
Bundles

&
React

20
23

24.4 …

Unified
Vaadin

Platform

20
24

…

Architecture and Concepts

Getting Started

• Maven
• Default

• Gradle
• https://vaadin.com/docs/latest/guide/start/gradle

Build

https://vaadin.com/docs/latest/guide/start/gradle

• Spring/Spring Boot
• Quarkus
• CDI Jakarta EE
• OSGi
• Portlet (commercial)

Integrations

• Scopes
• https://vaadin.com/docs/latest/integrations/spring/scopes

• Routing and Dependency Injection
• https://vaadin.com/docs/latest/integrations/spring/routing

• Configuration
• https://vaadin.com/docs/latest/integrations/spring/configuration

Spring Integration

https://vaadin.com/docs/latest/integrations/spring/scopes
https://vaadin.com/docs/latest/integrations/spring/routing
https://vaadin.com/docs/latest/integrations/spring/configuration

• https://start.vaadin.com

• https://start.spring.io

How to Start?

https://start.vaadin.com/
https://start.spring.io/

1. Optional: Register for a Vaadin account
2. Go to https://start.vaadin.com
3. Add a Flow Hello World View
4. Download the application
5. Unzip and import the project into your IDE
6. Install the IntelliJ Vaadin Plugin
7. Run the app
• Either with the IDE or
./mvnw spring-boot:run

Exercise: Getting Started

https://start.vaadin.com/

https://github.com/martinellich/vaadin-workshop

Project

https://github.com/martinellich/vaadin-workshop

Workshop Manager

• Create an application to manage workshops and participants
• A workshop has many participants, and a participant can

 attend one workshop
• The list of workshops is public
• To manage workshops and participants, the user must log in

Requirements

Routing and Navigation
https://vaadin.com/docs/latest/routing

https://vaadin.com/docs/latest/routing

@Route("")
public class HelloWorldView extends Div {

 public HelloWorldView() {
 setText("Hello world");
 }
}

Route

• Programatically

UI.getCurrent().navigate(HelloWorldView.class);

• RouterLink

new RouterLink("Home", HomeView.class);

Navigation

1. Create views according to the requirements
2. Programmatically navigate from one view to another view
3. Implement BeforeEnterObserver and display the current

timestamp

4. Bonus: Try out Route Templates

Exercise: Routing and Navigation

Vaadin Components
https://vaadin.com/docs/latest/components

https://vaadin.com/docs/latest/components

1. Get familiar with the Vaadin Components
2. Add one of the basic layouts Horizontal or Vertical)
3. Try out

1. Alignment
2. Spacing
3. Padding
4. Expanding

4. Bonus: Checkout the 3rd party components

Exercise: Components

Grids and Data Providers
https://vaadin.com/docs/latest/binding-data/data-provider

https://vaadin.com/docs/latest/binding-data/data-provider

• https://github.com/72services/vaadin-database-
performance

DataProvider Variations

https://github.com/72services/vaadin-database-performance
https://github.com/72services/vaadin-database-performance

1. Add grids on the two views to display Workshops and
Participants

2. The grids must be sortable
Hint: Checkout VaadinSpringDataHelpers

1. Bonus: Make the grids filterable
2. Bonus: Safe the sort order of the columns

Exercise: Grids and Data Providers

Forms and Data Binding
https://vaadin.com/docs/latest/binding-data/components-binder

https://vaadin.com/docs/latest/binding-data/components-binder

• The Binder class allows you to define how the values in a
business object are bound to fields in the UI
• Binder reads the values in the business object and converts

them from the format expected by the business object to the
format expected by the field.
• It also handles the reverse process, converting values from UI

fields to the format expected by the business object
• Binder can only bind components that implement the HasValue

interface, for example, TextField and ComboBox.
• It is also possible to validate user input and present the

validation status to the user in different ways.

Binder

• Binder

• BeanValidationBinder
• Must use property name!

.bind("name");

Binder Types

• Reading and Writing Automatically
• setBean

• Reading and Writing Manually
• readBean
• writeBean
• writeBeanIfValid

Loading From and Saving to Business Objects

1. Add Bean Validation constraints to Workshop and
Participant

2. Add a FormLayout to the workshop and participants view
3. Add input fields and a save button
4. Workshop status and topic must be Select fields
5. Participant workshop must be a ComboBox
6. Use the BeanValidationBinder
7. Populate the form when the users selects an item

in the Grid

Exercise: Forms and DataBinding

Testing

• Testing without browser Browserless)
• Runs Vaadin in a mock environment

• https://github.com/mvysny/karibu-testing

Karibu Testing

https://github.com/mvysny/karibu-testing

• E2E
• End-to-end testing with browser
• Based on Selenium

• Browserless
• Inspired by Karibu Testing

• https://vaadin.com/docs/latest/testing

Testbench

https://vaadin.com/docs/latest/testing

• https://playwright.dev/

• Why Playwright over Selenium?
https://vaadin.com/blog/testing-vaadin-applications-and-
add-ons-using-playwright

• Mopo - a helper library for testing Vaadin apps with
Playwright
https://github.com/viritin/mopo

E2E with Playwright

https://playwright.dev/
https://vaadin.com/blog/testing-vaadin-applications-and-add-ons-using-playwright
https://vaadin.com/blog/testing-vaadin-applications-and-add-ons-using-playwright
https://github.com/viritin/mopo

1. Add at least one Karibu test for a View

2. Add at least one TestBench test for a View

Exercise: Testing

Security
https://vaadin.com/docs/latest/flow/security

https://vaadin.com/docs/latest/flow/security

• Extend from VaadinWebSecurity

• Enables annotation-based security on views

Spring Security Integration

1. Add a dependency
org.springframework.boot:spring-boot-starter-security

2. Extend VaadinWebSecurity
3. Add a LoginView
4. The public workshop view should be anonymous allowed
5. Workshop and participant view are protected Role USER

Hint: The default username is “user” and the password will
be logged to the console

Exercise: Security

Styling
https://vaadin.com/docs/latest/styling

https://vaadin.com/docs/latest/styling

• Base on default Lumo theme

@Theme("my-theme")

• Folder structure
• frontend

• themes
• my-theme

• components
• styles.css

Theming

1. Change the primary color and the default font
2. Add a light-yellow background to all TextFields

Exercise: Theming

Localization
https://vaadin.com/docs/latest/advanced/i18n-localization

https://vaadin.com/docs/latest/advanced/i18n-localization

• Implement I18NProvider
• Usage:
Component.getTranslation() or
I18NProvider.translate()

• BeanValidationBinder
• You must use ValidationMessages.properties
• or https://martinelli.ch/vaadin-beanvalidationbinder-with-custom-

resource-bundle/

I18N

https://martinelli.ch/vaadin-beanvalidationbinder-with-custom-resource-bundle/
https://martinelli.ch/vaadin-beanvalidationbinder-with-custom-resource-bundle/

1. Implement I18NProvider
2. Add a resource bundle for German and English
3. Use getTranslation() in the views

Exercise: I18N

Push
https://vaadin.com/docs/latest/advanced/server-push

https://vaadin.com/docs/latest/advanced/server-push

• PDF generation takes long
• Display a progress indicator
• Display a notification with a download link when finished

• Notify other users when the data has been changed

Use Cases

• Activate with @Push
• Uses Atmosphere
• Asnychronous UI update

ui.access(() -> label.setText(text));

Push

1. Notify the users that are on the public workshop view
when a new workshop has been added

• Example
• https://github.com/simasch/vaadin-spring-events

Exercise: Push

https://github.com/simasch/vaadin-spring-events

https://vaadin.com/docs/latest/flow/create-ui/creating-
components/events
https://cookbook.vaadin.com/ui-eventbus

Component Events

https://vaadin.com/docs/latest/flow/create-ui/creating-components/events
https://vaadin.com/docs/latest/flow/create-ui/creating-components/events
https://cookbook.vaadin.com/ui-eventbus

Application Lifecycle
https://vaadin.com/docs/latest/advanced/application-lifecycle

https://vaadin.com/docs/latest/advanced/application-lifecycle

• When a browser first accesses a URL mapped to the servlet
of a particular UI class, the Vaadin servlet generates a
loader page. The page loads the client-side engine, which
in turn loads the UI in a separate request to the Vaadin
servlet
• A UI instance is created when the client-side engine makes

its first request
• UI instances are cleaned up if no communication is

received from them after a certain time

UI

Deploying to Production
https://vaadin.com/docs/latest/flow/production

https://vaadin.com/docs/latest/flow/production

mvn package –Pproduction

• Builds a JAR or WAR file with all the dependencies and
transpiled front-end resources, ready to be deployed.

Production Build

1. Create a production build

2. Run the executable JAR

Exercise: Deploying to Production

Thank you!
•Web

martinelli.ch
• EMail

simon@martinelli.ch
• Bluesky

@martinelli.ch
• LinkedIn

https://linkedin.com/in/
simonmartinelli

